Universitat Internacional de Catalunya
Teaching and Learning Mathematics 1
Other languages of instruction: English, Spanish
Teaching staff
Before the class.
Introduction
We cannot understand the world that surrounds us without good mathematical skills.
The main purpose of this module is to ensure that we know and appreciate this science as a tool necessary for daily life, and for the transformation of society.
In essence, to study mathematics is to learn to reason and become accustomed to being conscious of this reasoning.
A good mathematical background is essential for adapting to life in today’s world. The concepts of number, ratio and proportion, and the language and symbols of mathematics, are part of the standard intellectual knowledge of any modern man or woman.
Pre-course requirements
None
Objectives
General
1. Enjoyment of mathematics.
2. Knowledge of the primary level mathematics curriculum.
3. Learn the content of procedures, facts, concepts and conceptual systems and attitudes, values and standards.
4. Work on mathematical skills.
5. Through articles in academic journals, reflect on how mathematics is taught today.
Specific.
1. Learn various games, so that pupils will have fun doing mathematics.
2. Work on primary level mathematics skills and objectives.
3. Create ongoing assessment tasks and global learning processes in accordance with the general stage and subject objectives and final objectives.
4. Seek and make proposals for active teaching of mathematics.
5. Identify the difficulties of teaching mathematics and find possible solutions.
6. Hear different experiences of teaching mathematics.
Competences/Learning outcomes of the degree programme
CEM - 38 Acquire basic mathematics skills (numerical, calculation, geometric, spatial representation, estimation, measures, organisation and interpretation of information, etc.)
CEM - 39 Know the school mathematics curriculum.
CEM - 40 Analyse, reason and communicate mathematical approaches.
CEM - 41 State and solve problems related to daily life.
CEM - 42 Assess the relationship between mathematics and the sciences as one of the pillars of scientific thought.
CEM - 43 Develop and evaluate curriculum content through appropriate teaching resources and promote the corresponding skills to pupils.
COMPETENCES | METHODOLOGY | TRAINING ACTIVITY |
---|---|---|
CEM-38 | problem-based learning cooperative learning learning contract case study method expository method / master class problem-solving method | practical classes theory classes group study and work individual / independent study and work. seminar-workshops |
CEM-39 | problem-based learning cooperative learning learning contract expository method / master class problem-solving method | practical classes theory classes group study and work individual / independent study and work. seminar-workshops |
CEM-40 | problem-based learning cooperative learning project-based learning learning contract case study method | practical classes group study and work individual / independent study and work. tutorials |
CEM-41 | problem-based learning cooperative learning project-based learning learning contract case study method problem-solving method | practical classes group study and work individual / independent study and work. internships seminar-workshops |
CEM-42 | problem-based learning cooperative learning project-based learning case study method expository method / master class | practical classes theory classes group study and work individual / independent study and work. internships |
CEM-43 | cooperative learning project-based learning learning contract expository method / master class problem-solving method | practical classes theory classes group study and work individual / independent study and work. internships tutorials |
Learning outcomes of the subject
1. Have sufficient knowledge of mathematics to be able to perform teaching duties confidently.
2. Become familiar with the mathematics curriculum.
3. Learn the basic elements of the history of mathematics in order to recognise its key role in the educational framework.
4. Analyse and communicate mathematics approaches.
5. State problems associated with modern life, and resolve them innovatively.
6. Develop and assess curriculum content through relevant teaching resources, in order to promote pupils’ skills.
7. Ability to manage a mathematics class with the interactive elements involved, providing motivation and handling pupil diversity appropriately.
8. Use research, proposal and problem-solving strategies in the school environment.
9. Design mathematics teaching sequences.
10. Identify and work with professionals to resolve the difficulties involved in teaching mathematics and focus on quality.
11. Regard the relationship between mathematics and sciences as one of the fundamental pillars of scientific thought.
12. Creative interdisciplinary activities combining mathematics with other areas of the curriculum.
13. Incorporate information and communication technologies into teaching and learning activities.
14. Be able to communicate and express oneself appropriately in the language of instruction, both orally and in writing.
15. Learn how to interpret and incorporate knowledge from documents in English on this subject.
Syllabus
1. Child psychological development.
. Primary level mathematics curriculum.
3. Solving different types of problems.
4. Use of mathematical language.
5 Strategies for teaching mathematics.
6. Diversity awareness.
7. Difficulties in learning mathematics.
Teaching and learning activities
In person
SKILLS METHODOLOGY TRAINING ACTIVITIES
CEM-38 |
problem-based learning |
practical classes |
CEM-39 |
problem-based learning |
practical classes |
CEM-40 |
problem-based learning |
practical classes |
CEM-41 |
problem-based learning |
practical classes |
CEM-42 |
problem-based learning |
practical classes |
CEM-43 |
|
practical classes |
COMPETENCES | METHODOLOGY | TRAINING ACTIVITY |
---|---|---|
CEM-38 | problem-based learning cooperative learning learning contract case study method expository method / master class problem-solving method | practical classes theory classes group study and work individual / independent study and work. seminar-workshops |
CEM-39 | problem-based learning cooperative learning learning contract expository method / master class problem-solving method | practical classes theory classes group study and work individual / independent study and work. seminar-workshops |
CEM-40 | problem-based learning cooperative learning project-based learning learning contract case study method | practical classes group study and work individual / independent study and work. tutorials |
CEM-41 | problem-based learning cooperative learning project-based learning learning contract case study method problem-solving method | practical classes group study and work individual / independent study and work. internships seminar-workshops |
CEM-42 | problem-based learning cooperative learning project-based learning case study method expository method / master class | practical classes theory classes group study and work individual / independent study and work. internships |
CEM-43 | cooperative learning project-based learning learning contract expository method / master class problem-solving method | practical classes theory classes group study and work individual / independent study and work. internships tutorials |
Evaluation systems and criteria
In person
Skills acquisition assessment and grading system
1. Make contributions to discussions and debates in the classroom.
2. Written presentation of the psychopedagogical conditions of primary pupils with respect to mathematics.
3. Individual oral presentation of a fun mathematics activity.
4. Create a compilation of strategies to mathemathics.
5. Visual materials bits mathematics
6. Quality of presentation of individual and group work.
Continuous assessment throughout the semester.
Activities in the classroom account for 30% of the final grade.
The other 70% is obtained from the final exam at the end of the semester.
Penalty for Spelling Mistakes**
In written assignments of up to 7 pages, 0.1 points will be deducted per mistake if the work is handwritten, and 0.3 points if it is typed on a computer. The maximum deduction is 2 points.
In written assignments of more than 7 pages, 0.1 points will be deducted per mistake, whether it is handwritten or typed on a computer.
Learning outcome |
||||||||||||
Assessment system |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
1 |
X |
X |
X |
X |
X |
X |
X |
X |
X |
|||
2 |
X |
X |
X |
X |
X |
|||||||
3 |
X |
X |
X |
X |
X |
X |
X |
X |
X |
|||
4 |
X |
X |
X |
X |
||||||||
5 |
X |
X |
X |
X |
X |
X |
X |
X |
X |
|||
6 |
X |
X |
X |
X |
X |
X |
X |
X |
X |
X |
||
7 |
X |
X |
X |
X |
X |
X |
X |
X |
X |
X |
X |
X |
8 |
X |
X |
X |
X |
X |
X |
X |
X |
X |
X |
X |
X |
- Class attendance -80%
- Participation and involvement in the class dynamic
- Specific work on the different themes covered
- Creativity and imagination and contribution of personal opinions and criteria.
- Completion of written exercises
Bibliography and resources
- Curriculum management of education primary education in Catalonia..
- Alsina, C. (1993) Del número 0 al 99. Fem comptes amb els contes. Barcelona: Graó.
- Alsina, C. i altres (1997) Ensenyar matemàtiques. Barcelona: Graó.
- Alsina, C. i altres (1987) Invitación a la didáctica de la geometria. Madrid: Síntesis
- Baroody, A.J. (1994) El pensamiento matemático de los niños. Madrid : Aprendizaje Visor .
- Canals, M.A. (1989) Per una didàctica de la matemàtica a l’escola. Vic: EUMO
- Canals, M.A. (2010) Problemes i més problemes. Barcelona. A.Rosa Sensat
- Chamorro, Mª C (2008) Didáctica de las matemáticas para primária. Pearson. Madrid
- Cockcroft (Informe). (1986) Las matemáticas sí cuentan. Madrid: MEC.
- Codina, R.; Enfedaque,J i altres (1993) Fer matemàtiques. Vic.: Eumo.
- Giménez, J.; Girondo,L (1990) El càlcul a l’escola. Barcelona: Graó.
- Gómez, B. (1988) Numeración y cálculo. Madrid: Síntesis.
- Gutierrez, A. i altres (1991) Didáctica de la matemática. Madrid: Síntesis.
- Herman, F. (1988) Recursos en el aula de matemáticas. Madrid: Sínteis
- Mialaret, G. (1987) Las matemáticas, cómo se aprenden, cómo se enseñan. Madrid: Pablo del Rio.
- Segarra,Ll. Encercla el cercle. Barcelona: Graó. Col, Punt i seguit
- Shell Centre for Mathematical Education (1984) Problemeas con pautas y números. Universidad País Vasco , Leiva (1993)
- Udina, I. (1989) Aritmética y calculadoras. Madrid: Síntesis.
- Vallés, J. (1985) Didàctica de la matemàtica al cicle inicial. Barcelona: Rosa Sensat.
- Vidal, S. (2009) Estrategias para la enseñanza de las matemáticas en secundaria. Barcelona. Ed. Laertes
- Vidal, S. (2005) Dia del Número, motivació de la Matemàtica. Barcelona.Publicacions de l'Abadia de Montserrat.
- Vidal, S i altres (2009) Matemàtiques 6, A Bon Pas. Barcelona. Edebé.
- Vidal, S. (2009) Estrategias para la enseñanza de las matemáticas en secundaria. Barcelona. Ed. Laertes
-
Vidal, S. (2010). Dibudoku. En S. De la Torre, & M. A. Pujol, Creatividad e innovación. Enseñar e investigar con otra conciencia (págs. 201-210). Madrid: Editorial Universitas, S.A.
-
Vidal, S. (2010). Didàctica de les matemàtiques a secundària. En A. Mora, La situació de les matemàtiques a la secundària catalana. Anàlisis de l'estat de l'ensenyament i l'aprenentatge (págs. 43-58). Barcelona: Furtwagen Editores.
-
Vidal, S. (2010). Talens dag, att skapa lust för matemtiklärande. (G. universitet, Ed.) Nämnaren, Tidskrift för matematikundervisning, 173(1), 43-46
-
.Vidal, S. (2011). La situació de la didàctica de les matemàtiques a la secundària catalana. Analísi de l'estat de l'ensenyament i l'aprenetatge. Temps d'Educació(41), 185-199.
-
Vidal, S. (2013). El dia del número, motivación de la matemática. Saarbrücken: Publicia.
-
Vidal, S., & Balaguer, C. (2013). La comunicación de los problemes de matemáticas en la didàctica de los Grados de Educación en la UIC. (UCM, Ed.) Estudios sobre el Mensaje Periodistico(19), 531-541.
- Different articles for different magazines.